代表性论文: (1) Zhu T, Liu X*, Zhu E. Oversampling with Reliably Expanding Minority Class Regions for Imbalanced Data Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022.(CCF A,Google学术引用3次,IF:9.235) (2) Zhu T, Luo C, Zhang Z, et al. Minority oversampling for imbalanced time series classification[J]. Knowledge-Based Systems, 2022, 247: 108764. (中科院一区Top, Google学术引用8次, IF=8.139) (3) Zhu T, Lin Y, Liu Y. Improving interpolation-based oversampling for imbalanced data learning[J]. Knowledge-Based Systems, 2020, 187: 104826. (中科院一区Top, Google学术引用50次, IF=8.139) (4) 祝团飞,罗成,陈颖. 高校公共基础课思政教育体系研究—以大学计算机基础课程为例 [J]. 教育信息化论坛,2022,121.(省级期刊) (5) 祝团飞,罗成,曾一夫,张维. 基于分类难度的过采样度优化方法 [J]. 长沙大学学报,2022,36(5).(省级期刊) (6) Tuanfei Zhu; Yaping Lin*; Yonghe Liu; Wei Zhang; Jianming Zhang. Minority Oversampling for Imbalanced Ordinal Regression, Knowledge-Based Systems, 2019, 166: 140-155. (中科院一区论文,Google学术引用34次,IF:8.139) (7) Tuanfei Zhu; Yaping Lin*; Yonghe Liu; Synthetic Minority Oversampling Technique for Multiclass Imbalance Problems, Pattern Recognition, 2017, 72: 327-340. (中科院一区论文,Google学术引用176次,IF: 8.5) (8) Zeng Y, Ouyang S, Zhu T, et al. E-Commerce Network Security Based on Big Data in Cloud Computing Environment[J]. Mobile Information Systems, 2022, 2022. (SCI论文) (9) Li, Z., Huang, W., Xiong, Y., Ren, S., & Zhu, T. Incremental learning imbalanced data streams with concept drift: The dynamic updated ensemble algorithm. Knowledge-Based Systems, 2020, 195, 105694. (中科院一区Top, Google学术引用47次, IF=8.139) (10) Yuanyu He; Junhai Zhou*; Yaping Lin; Tuanfei Zhu; A class imbalance-aware Relief algorithm for the classification of tumors using microarray gene expression data, Computational Biology and Chemistry, 2019, 80: 121-127. (SCI,Google学术引用24次) (11) Qin Wu; Yaping Lin*; Tuanfei Zhu; Yue Zhang; HIBoost: A Hubness-Aware Ensemble Learning Algorithm for High-Dimensional Imbalanced Data Classification, Journal of Intelligent & Fuzzy Systems, 2020, 39(1): 1-12. (SCI,Google学术引用9次) |